Documentation

Documentation

  • Documentation
  • Integrated Examples
  • Help

›Open PMU

S3DK Utilities

  • Setting_Memory
  • S3DK_GUI
  • Calculate_Activity
  • Calculate_Angle_and_Amplitude
  • Input_Node
  • PMU_ARR_Calculate_Ratio_of_True
  • PMU_Recover_Light
  • PR_Queue_Multiple_Elements
  • PRL_BUFFER_Rearrange_Complex_2D_Array
  • PRL_BUFFER_Rearrange_Digital_2D_Array
  • PRL_Check_for_Bad_dt
  • PRL_Convert_STR_SGL_Array_to_String
  • PRL_Create_Waveform_Signal_by_Interpolation
  • PRL_DW_Check_Data_CSG
  • PRL_DW_Check_Data_SGL
  • PRL_DW_Clean_Data_CSG
  • PRL_DW_Clean_Data_SGL
  • PRL_Insert_Element_in_string
  • PRL_Queue_Multiple_Elements_at_Opposite_End
  • PRL_Queue_Reader
  • PRL_Rearrange_Analog_Array
  • PRL_Rearrange_Timestamp_Array
  • PRL_STR_Convert_CSG_Array_to_String
  • PRL_STR_Convert_Number_to_String
  • PRL_STR_Get_Selected_Indices
  • PRL_TS_Clip_Array
  • PRL_TS_Get_Real_Timestamp
  • PRL_TS_Round_to_Nearest_10ms
  • PRL_TS_Waiter
  • PRL_UTIL_Calculate_Data_Rate
  • PRL_UTIL_Check_Timestamp_Age
  • PRL_UTIL_Convert_Command_for_Display
  • PRL_UTIL_Get_Control_Value
  • PRL_UTIL_Get_Real_Timestamp
  • PRL_UTIL_Split_Command
  • PTR_STR_Convert_SGL_Array_to_String
  • Time_Stamp_to_iso_8601_with_Millieseconds

STRONGgrid DLL VI

  • Connect_PDC
  • Disconnect_PDC
  • DLL_Shutdown
  • Get_Analog_config_Ver.3
  • Get_Header_Msg
  • Get_Phasor_Config
  • Get_PMU_Configuration
  • Get_Real_PMU_Data
  • poll_PDC_With_Data_Waiting
  • Read_Configuration
  • Start_Data_Stream
  • Stop_Data_Stream

Buffer and Queue

  • PRL_Software_Documentation
  • Get_PRL_Access_Queue
  • PL_Signal_Create_Waveform_Array
  • PRL_Buffer_Cut_from_Analog_2D_Array
  • PRL_Buffer_Cut_from_Complex_2D_Array
  • PRL_Buffer_Cut_from_Digital_2D_Array
  • PRL_Channel_Selector
  • PRL_Check_Bad_dt
  • PRL_PMU_Status
  • PRL_Read_Queue
  • PRL_Reader_Buffer
  • PRL_Remote

TDMS Application

  • Create_log_File_Path
  • TDMS_Data_Logger
  • Write_to_TDMS
  • Write_Data_to_TDMS

Open PMU

  • Code_Flow_Chart
  • Main_Single_Phase
  • Main_Three_Phase
  • General_Startup
  • PIC_Microcontroller
  • 10_DAQ_Config
  • 11_DAQ_Config
  • 20_Limit_180_Degrees
  • 21_Symmetrical_Components
  • 22_Average_Frequnecy
  • 23_Input_Scaling
  • 24_Global_Front_Panel
  • 30_GPS_Time_Fetch
  • 31_GPS_Interrupt_RS232_Read
  • 32_GPS_Time_Code_Parser
  • 33_GPS_Time_to_Labview_Time
  • 34_GPS_Time_from_Config
  • 40_Config_File_Path
  • 41_Config_File_Write_GPS_Time
  • 42_Config_File_Read_GPS_Time
  • 43_Config_File_Get_Input_Scales
  • 44_Config_File_Read_Telecoms
  • 50_NMEA_Clac_Checksum

33_GPS_Time_to_Labview_Time

33 GPS Time to LabVIEW Time takes three inputs, the GPS Time, GPS Date, and the Century to output the time in a similar format in LabVIEW, used for creating a global time variable to create the synchrophasors. The Front Panel (above) displays all of this information.

ATTENTION: The GPS Time must be input in the format HR:MIN:S.MS The Date must be input in the format MM/DD/YY NOT MM/DD/YYYY

The Block Diagram (above) starts with the input GPS Time and GPS Date. ATTENTION: The GPS Time must be input in the format HR:MIN:S.MS The Date must be input in the format MM/DD/YY NOT MM/DD/YYYY. Both the GPS Time and GPS Date are converted into strings based on the format as stated in ATTENTION. Each string value excluding the millisecond time is bundled to a cluster, and converted into a LabVIEW Time Stamp. LabVIEW Time Stamp does not support millisecond when bundling, so the millisecond value is added to the Time Stamp once it has been created. The Time Stamp is then sent to the Front Panel as output.

← 32_GPS_Time_Code_Parser34_GPS_Time_from_Config →
Documentation
Specific Github links
S3DK-STRONGgridS3DK
Links to stuff
LMGTFYBasic Info for PMURensselaer Polytechnic InstituteAlset Lab
Docusaurus Resources
Docusarus websiteGitHubStar
Facebook Open Source
Copyright © 2019 Rensselaer Polytechnic Institute